Search results for "electron neutrino"

showing 10 items of 39 documents

Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

2016

A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes $A=204$, 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distr…

Particle physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear Theoryneutrino-nucleus interactionsElectronelectron neutrino01 natural sciencesNuclear physics0103 physical sciencesNuclear Experiment010306 general physicsNeutrino oscillationsupernova neutrinosCharged currentPhysicsta114010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyscatteringelectron antineutrinoSupernovalead isotopesIsospinQuasiparticleHigh Energy Physics::ExperimentNeutrinoElectron neutrinoPhysical Review C
researchProduct

Beta-decay studies for applied and basic nuclear physics

2020

In this review we will present the results of recent beta-decay studies using the total absorption technique that cover topics of interest for applications, nuclear structure and astrophysics. The decays studied were selected primarily because they have a large impact on the prediction of a) the decay heat in reactors, important for the safety of present and future reactors and b) the reactor electron antineutrino spectrum, of interest for particle/nuclear physics and reactor monitoring. For these studies the total absorption technique was chosen, since it is the only method that allows one to obtain beta decay probabilities free from a systematic error called the Pandemonium effect. The me…

safetyNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaPenning trapFOS: Physical sciencesnucleus: structure functionnuclear model[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energylaw.inventionNuclear physicslawnuclear physics0103 physical sciencesNuclear fusionNeutronDecay heatNuclear Experiment (nucl-ex)n: capture010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsantineutrino: spectrum010308 nuclear & particles physicsPandemonium effectsemileptonic decayNuclear reactorNeutron capturemonitoring13. Climate actionnuclear reactorDelayed neutronElectron neutrinoabsorptionThe European Physical Journal A
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Reconciling dark matter, solar and atmospheric neutrinos

1993

We present models that can reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component in the universe. This dark matter is a quasi-Dirac neutrino whose mass $m_{DM}$ arises at the one-loop level. The solar neutrino deficit is explained via nonadiabatic conversions of electron neutrino to a sterile neutrino and the atmospheric neutrino data via maximal muon neutrino to tau neutrino oscillations generated by higher order loop diagrams. For $m_{DM} \sim 30$ eV the radiative neutrino decay can lead to photons that can ionize interstellar hydrogen. In one of the models one can have observable $\nu_e$ to $\nu_\tau$ oscillation rates, with no appreciable mu…

PhysicsNuclear and High Energy PhysicsParticle physicsSterile neutrinoMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHot dark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Tau neutrinoHigh Energy Physics::ExperimentMuon neutrinoNeutrinoElectron neutrinoComputer Science::DatabasesNuclear Physics B
researchProduct

Neutrinoless double electron capture as a tool to measure the electron neutrino mass

1983

Abstract A nucleus (Z, A) may capture two atomic electrons to become (Z − 2, A). For Majorana neutrinos this may occur with no neutrino emission, the process is a virtual mixing of the parent atom and the daughter atom with two electron holes. The process becomes real as the daughter atom de-excites. In some cases where the daughter nucleus is excited, the neutrinoless decay may be enhanced by its proximity to a virtual resonance. We identify the 112 Sn → 112 Cd transition as a good case. The no-neutrino lifetime for mν = 30 eV ranges from 1022 to 1027 years as a function of the insufficiently well determined distance to resonance. The signatures of the two- or no-neutrino modes are very di…

PhysicsNuclear and High Energy PhysicsElectron captureHigh Energy Physics::PhenomenologyFísicaWeak interactionNuclear physicsMAJORANAExcited stateAtomHigh Energy Physics::ExperimentAtomic physicsNeutrinoNuclear ExperimentNeutrino oscillationElectron neutrinoGeneral Theoretical PhysicsNuclear Physics B
researchProduct

Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam

2020

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40 σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and a…

muon antineutrino beamGeneral Physics and Astronomyantineutrino/mu: secondary beamKAMIOKANDEantineutrino/e: particle identification01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)secondary beam [neutrino/mu][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino/e: particle identificationQCPhysics02 Physical SciencesPhysicsJ-PARC LabT2K experimentelectron antineutrinoT2K CollaborationkinematicsPhysical SciencesParticle Physics - ExperimentT2K experiment in an accelerator-producedGeneral Physics530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesparticle identification [antineutrino/e]Neutrino beamsecondary beam [antineutrino/mu]530Physics::GeophysicsNuclear physics0103 physical sciencesmixingddc:530010306 general physics01 Mathematical SciencesMuonScience & Technologyparticle identification [neutrino/e]hep-exbackgroundHigh Energy Physics - Experiment; High Energy Physics - Experimentneutrino/mu: secondary beamantineutrino: oscillationoscillation [antineutrino]Elementary Particles and FieldsHigh Energy Physics::ExperimentPMNSElectron neutrinoBeam (structure)Free parameterexperimental results
researchProduct

Combining LSND and Atmospheric Anomalies in a Three-Neutrino Picture

2001

We investigate the three-neutrino mixing scheme for solving the atmospheric and LSND anomalies. We find the region in the parameter space that provides a good fit to the LSND and the SK atmospheric data, taking into account the CHOOZ constraint. We demonstrate that the goodness of this fit is comparable to that of the conventional fit to the solar and atmospheric data. Large values of the LSND angle are favoured and $\sin^2(2\theta_{\rm LSND})$ can be as high as 0.1. This can have important effects on the atmospheric electron neutrino ratios as well as on down-going multi-GeV muon neutrino ratios. We examine the possibility of distinguishing this scheme from the conventional one at the long…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderPhysics::Instrumentation and DetectorsFísicaFOS: Physical sciencesParameter spaceCHOOZNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Muon neutrinoHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationElectron neutrinoMixing (physics)Particle Physics - Phenomenology
researchProduct

The development of the KATRIN magnet system

2006

The Karlsruhe Tritium Neutrino Experiment KATRIN aims to measure the mass of the electron neutrino with unprecedented accuracy. For this experiment a special magnet system with about 30 LHe bath cooled superconducting magnets grouped in 10 different sections needs to be developed. The magnetic fields required for the electron transport and spectrometer resolution have a level between 3 and 6 T and must be constant in time over months. Further requirements for field homogeneity and tritium compatibility lead to a unique magnet system. A challenging task of this system is to keep the 10 m beam tube of the source magnet at a constant temperature of 30 K with extremely high temperature stabilit…

PhysicsHistorySpectrometerPhysics::Instrumentation and DetectorsLiquid heliumSuperconducting magnetComputer Science ApplicationsEducationlaw.inventionNuclear physicsDipole magnetlawMagnetNeutrinoElectron neutrinoKATRINJournal of Physics: Conference Series
researchProduct

A combined beta-beam and electron capture neutrino experiment

2009

The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, theta_{13}, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the beta-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase delta and the theta_{13} angle, the CP-discovery potential …

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron captureHigh Energy Physics::PhenomenologyPhase (waves)FOS: Physical sciencesFísica01 natural sciences7. Clean energyIonHigh Energy Physics - PhenomenologyCP violationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentSensitivity (control systems)Neutrino010306 general physicsElectron neutrinoBeam (structure)Lepton
researchProduct

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct